

Top-of-the-line operation and performance efficiency

*Amplifiers feature switching power supply and Class-D technology.

TOA Digital Amplifier technology redefines the very concept of amplifiers.

The power supply unit is the heart of the amplifier. To ensure consistently high performance and reliable operation, TOA engineers have given the DA Series a system that provides power independently to each channel.

This testifies to TOA's attitude to product development, which is always totally motivated by the desire to provide high-quality products that offer worry-free use.

Never compromise that's the TOA philosophy.

High efficiency

Extremely high amplification efficiency of 80-90\%, resulting in reduction in power consumption by more than 60% compared with Class-AB amplifiers.

Highly durable

Stands up to extended hours of operation. The DA amplifier has undergone a large number of rigorous tests to prove its durability. In addition, TOA has been conducting a "non-stop driving test" of the DA Series.

High reliability

The DA amplifier has a comprehensive protection circuitry for protection against excessive current flow due to overload, short circuit, unusual DC voltage output, and heat sink temperature rise (DA-250D/DH, DA-550F/ $500 \mathrm{~F}-\mathrm{HL}$: over $100^{\circ} \mathrm{C}, \mathrm{DA}-250 \mathrm{~F} / \mathrm{FH}$: over $110^{\circ} \mathrm{C}$).

Independent power supply

Each of the channels has its own power supply. If the power supply of Channel 1 should fail, this won't affect the operation of Channels 2-4 (Channel 2 in case of DA-250D/DH). It is also possible to use one of the channels as a spare amplifier.

Amplifier with world-class lightweight design*

Installation has become much easier thanks to the lightweight design.
*TOA comparative data (weight/watt)

Compact design

The DA-250 Series is 1 -unit size and the DA-500 Series is 2-unit size, and they can be efficiently mounted on a rack, so they require only a small installation space. Because the amplifiers do not generate much heat, 5 units can be stacked together in a rack.

不TOA

ITOA

不TOA

CH 1/BRIDGE 1

CH2

Design optimization for efficient and reliable high-level performance

The TOA DA-250F/FH, DA-250D/DH and DA-550F/500F-HL multi-channel power amplifiers offer a wider choice of power ratings, advanced digital Class D amplification circuitry, and a highly efficient AC mains to output power ratio, for the complete technological superiority it takes to support long-term
 installation applications. These energy-efficient, space-saving amplifiers are designed to combine high levels of performance and efficiency, and are well-suited to ensure sound reinforcement reliability in a wide range of venue types. The low-impedance models are ideal for multi-zone applications such as presentation and press-conference rooms, restaurants and similar-sized locations. The highimpedance units are well-suited to such locations as exhibition halls, sports facilities, multipurpose halls and houses of worship.

DA-250F (rear)

DA-500F-HL (rear)
MT-251H
Matching Transformer (option)

Capacity:
0-250W
Primary impedance: $\quad 100 \mathrm{~V}$ line: 40Ω (250W), 70 V line: 19.6Ω (250W)
Secondary impedance: 100 V line: 40Ω (250W), 70 V line: 19.6Ω (250W), 50 V line: 10Ω (250W),
35 V line: 4.9Ω (250W)
Frequency Response: $30-18,000 \mathrm{~Hz}(+0 \mathrm{~dB},-3 \mathrm{~dB})$
Connection Terminal: M3 screw terminal, distance between barriers: 6.6 mm
Dimensions: $\quad 108(\mathrm{~W}) \times 80(\mathrm{D}) \times 122(\mathrm{H}) \mathrm{mm}\left(4.25^{\prime \prime} \times 3.15^{\prime \prime} \times 4.8^{\prime \prime}\right)$
Weight:
$2.4 \mathrm{~kg}(5.29 \mathrm{lb})$

SPECIFICATIONS

Model	DA-250F	DA-250FH	DA-250D	DA-250DH	DA-550F	DA-500F-HL
Power Req.	120 V AC, 50/60Hz					
Number of Channels	4		2		4	
Total Output All Channel Driven	1000W ($1 \mathrm{kHz}, 4 \Omega$) 680W ($1 \mathrm{kHz}, 8 \Omega$)	1000W ($1 \mathrm{kHz}, 19.6 \Omega$)	500W (1kHz, 4 Ω) $340 \mathrm{~W}(1 \mathrm{kHz}, 8 \Omega)$	500W (1kHz, 19.6)	$\begin{aligned} & 2200 \mathrm{~W}(1 \mathrm{kHz} 4 \Omega) \\ & 1400 \mathrm{~W}(1 \mathrm{kHz}, 8 \Omega) \end{aligned}$	400W ($1 \mathrm{kHz}, 4 \Omega$) 2200W ($1 \mathrm{kHz}, 8 \Omega$) 2000W ($1 \mathrm{kHz}, 9.8 \Omega$)
Output Voltage per Channel	$\begin{aligned} & 31.6 \mathrm{~V}(1 \mathrm{kHz}, 4 \Omega) \\ & 36.9 \mathrm{~V}(1 \mathrm{kHz}, 8 \Omega) \end{aligned}$	$70 \mathrm{~V}(1 \mathrm{kHz}, 19.6 \Omega)$	$31.6 \mathrm{~V}(1 \mathrm{kHz}, 4 \Omega)$ 36.9 V ($1 \mathrm{kHz}, 8 \Omega$)	70 V (1kHz, 19.6 ${ }^{\text {) }}$	$\begin{aligned} & 46.9 \mathrm{~V}(1 \mathrm{kHz}, 4 \Omega) \\ & 52.9 \mathrm{~V}(1 \mathrm{kHz}, 8 \Omega) \end{aligned}$	$\begin{aligned} & 20 \mathrm{~V}(1 \mathrm{kHz}, 4 \Omega) \\ & 66.3 \mathrm{~V}(1 \mathrm{kHz}, 8 \Omega) \\ & 70 \mathrm{~V}(1 \mathrm{kHz}, 9.8 \Omega) \end{aligned}$
Output Current per Channel	$\begin{aligned} & 7.9 \mathrm{~A}(1 \mathrm{kHz}, 4 \Omega) \\ & 4.6 \mathrm{~A}(1 \mathrm{kHz}, 8 \Omega) \end{aligned}$	$3.6 \mathrm{~A}(1 \mathrm{kHz}, 19.6 \Omega)$	7.9A $(1 \mathrm{kHz}, 4 \Omega)$ 4.6A ($1 \mathrm{kHz}, 8 \Omega$)	$3.6 \mathrm{~A}(1 \mathrm{kHz}, 19.6 \Omega)$	$11.7 \mathrm{~A}(1 \mathrm{kHz}, 4 \Omega)$ $\text { 6.6A (1kHz, 8 } \Omega \text {) }$	$5 \mathrm{~A}(1 \mathrm{kHz}, 4 \Omega)$ 8.3A ($1 \mathrm{kHz}, 8 \Omega$) 7.1A ($1 \mathrm{kHz}, 9.8 \Omega$)
Power Output 8 ohms per channel 4 ohms per channel 16 ohms bridged 8 ohms bridged Hi-Z: 70V per channel Hi-Z: 140 V bridged, per channel	$\begin{aligned} & 170 \mathrm{~W} \\ & 250 \mathrm{~W} \\ & 340 \mathrm{~W} \\ & 500 \mathrm{~W} \\ & - \end{aligned}$	$\begin{aligned} & \bar{Z} \\ & \bar{Z} \\ & \text { 250W } \\ & 500 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 170 \mathrm{~W} \\ & 250 \mathrm{~W} \\ & 340 \mathrm{~W} \\ & 500 \mathrm{~W} \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \overline{250 W} \\ & 500 \mathrm{~W} \end{aligned}$	350W 550W 700W 1100W -	$\begin{aligned} & 550 \mathrm{~W} \\ & 100 \mathrm{~W}^{\star 1} \\ & 1100 \mathrm{~W} \\ & \overline{500 W} \\ & 1000 \mathrm{~W} \end{aligned}$
Power Consumption* Idle power consumption56W, 1.0A	58W, 1.0A	28W, 0.5A	35W, 0.7A	63W, 1.2A	69W, 1.3A	
Rated power consumption $1 \mathrm{kHz} \quad 8$ ohms 4 ohms 70 Volts	850W, 11.7A $1300 \mathrm{~W}, 16.9 \mathrm{~A}$	$\overline{\overline{12}} \mathbf{}$	420W, 5.9A 650W, 8.7A -	580W, 7.8A	1650W, 22.4A 2800W, 35.5A	2600W, 33.2A 580W, 9.1A 2350W, 30.4A
$\begin{array}{r} 1 / 8 \text { Power Pink noise }{ }^{\star 2} 8 \text { ohms } \\ 4 \text { ohms } \\ 70 \text { Volts } \end{array}$	183W, 3.0A 257W, 4.2A -	-	$\begin{aligned} & 102 \mathrm{~W}, 1.7 \mathrm{~A} \\ & 132 \mathrm{~W}, 2.3 \mathrm{~A} \end{aligned}$	- ${ }^{4} 7 \mathrm{~W}$ W, 2.3A	317W, 5.2A 658W, 9.7A	504W, 7.4A 171W, 2.9A 437W, 6.7A
$\begin{array}{r} 1 / 3 \text { Power Pink noise }{ }^{\star 3} 8 \text { ohms } \\ 4 \text { ohms } \\ 70 \text { Volts } \end{array}$	362W, 5.4A 597W, 8.6A -	- 609W, 8.5A	197W, 3.1A 308W, 4.4A \qquad	311W, 4.5A	667W, 9.5A 1060W, 14.0A \qquad	$\begin{aligned} & \text { 1080W, 15.2A } \\ & 313 \mathrm{~W}, 4.9 \mathrm{~A} \\ & 1036 \mathrm{~W}, 13.9 \mathrm{~A} \end{aligned}$
$1 / 8$ Power 1 kHz 8 ohms 40 hms 70 Volts	$\begin{aligned} & 152 \mathrm{~W}, 2.5 \mathrm{~A} \\ & 219 \mathrm{~W}, 3.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \overline{-} \\ & 224 \mathrm{~W}, 3.6 \mathrm{~A} \end{aligned}$	84W, 1.4A 112W, 1.8A	$\overline{\overline{12} 3 \mathrm{~W}, 2.0 \mathrm{~A}}$	277W, 4.5A 510W, 7.6A -	410W, 6.3A 151W, 2.7A 374W, 5.9A
$\begin{array}{ll}1 / 3 \text { Power } 1 \mathrm{kHzz} & 8 \text { ohms } \\ & 4 \text { ohms } \\ 70 \text { Volts }\end{array}$	314W, 4.7A 507W, 7.3A -	$\overline{\overline{4}}{ }^{49 \mathrm{~W}}, 7.2 \mathrm{~A}$	$\begin{aligned} & 160 \mathrm{~W}, 2.5 \mathrm{~A} \\ & 222 \mathrm{~W}, 3.4 \mathrm{~A} \end{aligned}$	$\overline{-}_{256 \mathrm{~W}, 3.8 \mathrm{~A}}$	519W, 8.6A 958W, 13.0A -	991W, 13.5A 260W, 4.3A 883W, 12.2A
Frequency Response	$20 \mathrm{~Hz}-20 \mathrm{kHz}(\pm 1 \mathrm{~dB})$	$\begin{aligned} & \text { HPF ON: } 50 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (-3 \mathrm{~dB}, 0 \mathrm{~dB}) \\ & \text { HPF OFF: } 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (\pm 1 \mathrm{~dB}) \end{aligned}$	$20 \mathrm{~Hz}-20 \mathrm{kHz}(\pm 1 \mathrm{~dB})$	$\begin{aligned} & \text { HPF ON: } 50 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (-3 \mathrm{~dB}, 0 \mathrm{~dB}) \\ & \text { HPF OFF: } 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (\pm 1 \mathrm{~dB}) \end{aligned}$	$20 \mathrm{~Hz}-20 \mathrm{kHz}(-2 \mathrm{~dB},+1 \mathrm{~dB})$	$\begin{aligned} & \text { HPF ON: } 50 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (-3 \mathrm{~dB},+1 \mathrm{~dB}) \\ & \text { HPF OFF: } 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ & (-2 \mathrm{~dB},+1 \mathrm{~dB}) \end{aligned}$
THD	$\begin{aligned} & 0.1 \%(1 \mathrm{kHz}) \\ & 0.3 \%(20 \mathrm{~Hz}-20 \mathrm{kHz}) \end{aligned}$	HPF ON: 0.1 \% (1 kHz), $0.3 \%(100 \mathrm{~Hz}-20 \mathrm{kHz})$ HPF OFF: 0.1% (1 kHz), $0.3 \%(20 \mathrm{~Hz}-20 \mathrm{kHz})$	$\begin{aligned} & 0.1 \%(1 \mathrm{kHz}) \\ & 0.3 \%(20 \mathrm{~Hz}-20 \mathrm{kHz}) \end{aligned}$	HPF ON: 0.1 \% (1 kHz), 0.3 \% ($100 \mathrm{~Hz}-20 \mathrm{kHz})$ HPF OFF: $0.1 \%(1 \mathrm{kHz})$, $0.3 \%(20 \mathrm{~Hz}-20 \mathrm{kHz})$	$\begin{aligned} & 0.1 \%(1 \mathrm{kHz}) \\ & 0.15 \%(20 \mathrm{~Hz}-20 \mathrm{kHz}) \end{aligned}$	$\begin{aligned} & 0.1 \%(1 \mathrm{kHz}) \\ & \text { HPF ON: 0.3 \% (100Hz-20kHz) } \\ & \text { HPF OFF: } 0.3 \% \\ & \text { (20Hz - } 20 \mathrm{kHz} \text {) } \end{aligned}$
S/N Ratio (A weighted)	100dB					
Crosstalk at 10kHz (A weighted)	70dB					
DC Offset*	$\pm 5 \mathrm{mV}$					
Voltage Gain*	29.5 dB	35.1dB	29.5dB	35.1 dB	32.6dB	35.1dB
Damping Factor*	100	220	100	220	95	115
Inputs Input impedance Input sensitivity Input clipping	$10 \mathrm{k} \Omega$ (unbalanced), $20 \mathrm{k} \Omega$ (balanced)$+4 \mathrm{~dB}(1.23 \mathrm{~V})$$14 \mathrm{~V} \text { (25.1dBu) }$				$\begin{gathered} 10 \mathrm{k} \Omega \text { (unbalanced), } 20 \mathrm{k} \Omega \text { (balanced) } \\ +4 \mathrm{~dB}(1.23 \mathrm{~V}) \\ 12 \mathrm{~V}(23.8 \mathrm{dBu}) \end{gathered}$	
Protection Circuit Amplifier section Power supply section	DC output, overheat protection, load shorting, overload current, maximum outputOverheat protection, $A C$ rush current Overheat protection, AC rush current					
Cooling	Continuously constant speed fan with front-to-rear airflow, 50,000 hours life time at $25^{\circ} \mathrm{C}$				Continuously constant speed fan with front-to-rear airflow, 100,000 hours life time at $25^{\circ} \mathrm{C}$	
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$					
Operating Humidity	Under 90\% RH (no condensation)					
Dimensions	$\begin{gathered} 482(\mathrm{~W}) \times 44(\mathrm{H}) \times 401(\mathrm{D}) \mathrm{mm} \\ \left(18.98^{\prime \prime} \times 1.73^{\prime \prime} \times 15.79^{\prime \prime}\right) \end{gathered}$				$\begin{gathered} 482(\mathrm{~W}) \times 88.4(\mathrm{H}) \times 404.2 \text { (D) } \mathrm{mm} \\ \left(18.98^{\prime \prime} \times 3.48^{\prime \prime} \times 15.91^{\prime \prime}\right) \end{gathered}$	
Weight	6.6 kg (14.6 lb)		5 kg (11.02 lb)		$8.8 \mathrm{~kg}(19.4 \mathrm{lb})$	
Finish	Panel: Aluminum, alumite process, black/Case: Plated steel sheet					
Accessory	Euro style terminal block connector (3-pin) $\times 4$, Tamper-proof cap $\times 4$		Euro style terminal block connector (3 -pin) $\times 2$, Tamper-proof cap $\times 2$		Euro style terminal block connector (3-pin) $\times 4$, Tamper-proof cap $\times 4$	
Option	-	Matching transformer: MT-251H	-	Matching transformer: MT-251H	-	Matching transformer: MT-251H
$0 \mathrm{~dB}=0.775 \mathrm{~V} \mathrm{rms}$ *Typical data ${ }^{* 1}$ For a 4Ω speaker, max. output is limited to 100 W . ${ }^{* 2} 1 / 8$ power with pink noise represents typical program with occasional clipp ${ }^{* 3} 1 / 3$ power with pink noise represents severe program with heavy clipping.						

TOA Corporation

